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Abstract. The fine structure and the hyperfine structure for some singly-excited and doubly-excited states
of helium atom are calculated using Rayleigh-Ritz variational method with multi-configuration-interaction
wave functions. The calculated results of the fine structure for the Rydberg series are in good agree-
ment with other theoretical and experimental data. The hyperfine parameters and the hyperfine coupling
constants of 3He are also obtained for this system.

PACS. 32.10.Fn Fine and hyperfine structure – 31.30.Gs Hyperfine interactions and isotope effects,
Jahn-Teller effect

1 Introduction

Helium is the simplest coulomb three-body system that
exhibits strong electron-electron correlation. Both exper-
imental measurements of energies and spectra in helium
and the corresponding theoretical calculations are funda-
mental problems in atomic physics. The large fine struc-
ture intervals of the 1s2p 3Po state of helium is ideal for
investigating the fine structure constant α and for testing
QED to this two-electron system. Many experimental and
theoretical investigations have been achieved very high
precision for the 1s2p 3Po state [1–17]. Experimentally,
the development of laser spectroscopy and microwave mea-
surement made advantageous to measure fine structure to
very high accuracy. Shiner et al. [1] measured the Lamb
shift and fine structure of the 2s 3S–2p 3Po transition in
helium using laser excitation of an atomic beam. George
et al. [2] achieved the most precise result of 2 3Po fine
structure of helium in microwave measurement. Theoret-
ically, Lewis et al. [9] predicted the fine structure split-
tings of the J = 1 to J = 0 interval of the 1s2p 3Po

state by including the major part of the second-order con-
tribution to the fine structure. Drake et al. [10–13] sub-
stantially improved the precision of the fine structure cal-
culations for this state, with computational uncertainties
less than 1 kHz, by including all known terms of order
α5 a.u. (α7mc2) arising from the electron–electron interac-
tion and recoil corrections of order α4µ/M a.u. Using the
variational wavefuntions constructed by doubled Hylleraas
basis sets, Drake [15] provided essentially exact results for
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the entire singly-excited spectrum of helium. However, to
our knowledge, few data have been reported for the fine
structure of the singly-excited and doubly-excited states
of helium atom.

In this paper, the fine structure and the hyper-
fine structure for some singly-excited and doubly-excited
states of helium are calculated using Rayleigh-Ritz varia-
tional method with multi-configuration-interaction wave
functions. The hyperfine parameters and the hyperfine
coupling constants are also explored for this system. The
available data should be very useful in better understand-
ing the experimental spectra in the future.

2 Theory

The non-relativistic Hamiltonian for helium atom is given
in atomic units by

H0 =
2∑

i=1

[
−1

2
∇2

i −
2
ri

]
+

1
r12

· (1)

The basic wave function for the two-electron system can
be written as

Ψb(1, 2) = A
∑

i

Ciφn(i),l(i)(R)Y LM
l(i) (Ω)χSSz (2)

where A is the antisymmetrization operator and the radial
basis function is Slater orbital

φn(i),l(i)(R) =
2∏

j=1

r
nj

j exp(−αjrj). (3)
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The angular part is

Y LM
l(i) (Ω) =

∑
mj

〈l1l2m1m2|LM〉
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Yljmj (Ωj) (4)

where

Ylm(θ, ϕ) = (−1)m

[
(2l + 1)(1 − m)!

4π(1 + m)!

]1/2

× Pm
l (cos θ) exp(imϕ) (5)

and Pm
l (cos θ) is an associated Legendre polynomial.

A different set of αj is used for each angular parts
[l1, l2]. The linear parameters Ci and the nonlinear pa-
rameters αj are determined in the energy optimization
processes.

The total energy is further improved by including the
relativistic corrections and mass polarization effect. The
explicit expressions of these perturbation operators are
given in reference [18], they will not be repeated here.
Then the total energy becomes Etotal = Eb + ∆Erel.

The fine-structure perturbation operators are given by

HFS = HSO + HSOO + HSS (6)

where the spin-orbit, spin-other-orbit, and spin-spin oper-
ators are

HSO =
Zα2

2
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r3
i

(7)
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r2
ij

]
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The li and si are the orbital and the spin angular momen-
tum of the ith electron. To calculate the fine structure
splitting, the LSJ coupling scheme is used:

ΨLSJJZ =
∑

SZ ,LZ

〈LSLZSZ |JJZ〉Ψb(1, 2). (10)

The fine-structure energy levels are calculated by first-
order perturbation theory:

(∆EFS)J = 〈ΨLSJJZ |HSO + HSOO + HSS|ΨLSJJZ 〉. (11)

For a two-electron system, the hyperfine interaction
Hamiltonian can be represented as follows [20,21]:

Hhfs =
∑
k=1

T (k)M (k) (12)

where T (k) and M (k) are spherical tensor operators of rank
k in the electronic and nuclear space, respectively. The

k = 1 term represents the magnetic-dipole interaction be-
tween the magnetic field generated be the electrons and
nuclear magnetic dipole moments, the k = 2 term the
electric quadrupole interaction between the electric field
gradient from the electrons and the non-spherical charge
distribution of the nucleus. The higher-order contribution
terms are much smaller and can often be neglected.

In the non-relativistic framework, the electronic tensor
operators can be written as:

T (1) =
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and

T (2) = −
2∑

i=1

r−3
i C

(2)
i (14)

where α is the fine structure constants, gl = (1 − me/M)
and gs = 2.0023193 are the orbital the electron spin g fac-
tor, respectively. δ is the three-dimensional delta function.
M is the nuclear mass. The tensor C

(2)
i is connected to the

spherical harmonics Ylm by

C(l)
m =

√
4π

2l + 1
Ylm(θ, ϕ). (15)

The hyperfine interaction couples the electronic angu-
lar momenta J and the nuclear angular momenta I to
a total angular momentum F = I + J. The uncoupling
hyperfine constants aC , aSD, al, and bq are defined as
follows [20,21]:
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al =

〈
γLSLS

∣∣∣∣∣
2∑

i=1

l0(i)r−3
i

∣∣∣∣∣ γLSLS

〉
(orbital) (18)
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(electric quadrupole) (19)

and the coupling hyperfine constants AJ and BJ are de-
fined as follows:

AJ =
µI

I

1

[J(J + 1)(2J + 1)]1/2
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where µI is the nuclear magnetic moment. Q is the nuclear
electric quadrupole moment.
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Table 1. Center-of-gravity term energies ECG (µa.u.), fine structure corrections ∆EJ (in µa.u.) and fine structure splittings
νJ−J′ (in cm−1) for some triplet states in helium.

∆EJ (µa.u.)

States ECG J = L + 1 J = L J = L − 1 ν3−2 ν2−1 ν1−0 Source

1s2p 3Po 770 521.69 −0.659 −0.304 4.206 −0.0779 −0.9895 This work
770 521.69 −0.655 −0.307 4.196 −0.0765 −0.9881 Drake [15]

−0.0764 −0.9879 Drake [13]
−0.0764 −0.9879 Zhang and Drake [12]
−0.0766 −0.9875 Hijikata [26]
−0.0764 −0.9879 Pchucki [14]
−0.0764 −0.9879 Exp. [1]

−0.9879 Exp. [2]
−0.0764 −0.9879 Exp. [3]
−0.0764 −0.9879 Exp. [4,6]
−0.0764 −0.9879 Exp. [7]
−0.0764 −0.9879 Exp. [8]

1s3p 3Po 845 618.17 −0.188 −0.076 1.168 −0.0245 −0.2731 This work
845 610.18 −0.182 −0.181 1.152 −0.0220 −0.2707 Drake [15]

1s4p 3Po 871 375.61 −0.079 −0.028 0.481 −0.0112 −0.1119 This work
871 368.26 −0.074 −0.033 0.470 −0.0090 −0.1103 Drake [15]

1s5p 3Po 883 159.05 −0.042 −0.012 0.247 −0.0066 −0.0570 This work
883 140.67 −0.037 −0.017 0.236 −0.0045 −0.0554 Drake [15]

1s6p 3Po 889 543.28 −0.023 −0.005 0.132 −0.0039 −0.0301 This work
889 484.47 −0.021 −0.010 0.135 −0.0026 −0.0317 Drake [15]

2p2 3Pe 2 193 289.61 4.480 −4.150 −9.960 1.8932 1.2760 This work
2p3p 3Pe 2 335 973.64 4.400 −4.330 −9.010 1.9165 1.0270 This work
2p4p 3Pe 2 367 920.52 4.428 −4.400 −8.937 1.9372 0.9955 This work
2p5p 3Pe 2 381 534.32 4.437 −4.424 −8.915 1.9444 0.9855 This work
2p6p 3Pe 2 388 627.91 4.442 −4.434 −8.906 1.9477 0.9813 This work
1s3d 3De 848 058.65 −0.048 −0.532 0.165 −0.0034 −0.0434 This work

848 058.65 −0.046 −0.035 0.166 −0.0025 −0.0442 Drake [15]
1s4d 3De 872 404.73 −0.020 −0.013 0.070 −0.0015 −0.0183 This work

872 404.73 −0.020 −0.014 0.070 −0.0012 −0.0185 Drake [15]
1s5d 3De 883 673.61 −0.010 −0.007 0.036 −0.0008 −0.0094 This work

883 673.61 −0.010 −0.007 0.036 −0.0006 −0.0095 Drake [15]
1s6d 3De 889 793.21 −0.006 −0.004 0.021 −0.0005 −0.0054 This work

889 793.21 −0.006 −0.004 0.021 −0.0004 −0.0055 Drake [15]
2p3d 3Do 2 344 460.22 2.907 −1.452 −4.364 0.9565 0.6392 This work
2p4d 3Do 2 371 110.79 2.948 −1.471 −4.427 0.9696 0.6488 This work
2p5d 3Do 2 383 081.68 2.959 −1.477 −4.442 0.9734 0.6505 This work
2p6d 3Do 2 389 498.99 2.962 −1.480 −4.445 0.9746 0.6508 This work

3 Results and discussion

In this work, ten Rydberg series of helium, 1sns 1,3Se,
1snp 1,3Po, 1snd 1,3De, 2pnp 1,3Pe, and 2pnd 1,3Do states
with n = 2–6, are studied. The fine structure and hyper-
fine structure for these Rydberg systems are calculated us-
ing Rayleigh-Ritz variational method with accurate multi-
configuration-interaction wave functions constructed from
Slater basis sets. The electron correlation effects between
the two electrons are large. Many relevant angular and
spin couplings are important for the energy. In order to get
the high quality wave function, the number of angular-spin
components in the wave functions ranges from 5 to 10, and
the number of linear parameters ranges from 85 to 253.
The angular series [l1, l2] with more than 1.0 × 10−5 a.u.
energy contribution are included in Ψb, and l is up to 9, as
the energy contribution from set with l > 9 is small and
negligible.

Table 1 shows the center-of-gravity energies in this
work are in good agreement with the theoretical data of
Drake [15]. This indicates that the precision of our calcula-
tion is sufficiently high in this two-electron system. Com-
parisons have been made between this work and Drake [15]
for the fine structure correction to the center-of-gravity
term energy of the 1snl 3Po, and 3De states. Our calcula-
tion results of the fine structure corrections are almost the
same as that of Drake [15]. This shows that our method
is effective in the calculations of the fine structure correc-
tions. The fine structure splittings for this system are also
given in Table 1. The 1s2p 3Po state is an excellent sys-
tem to test QED and to measure fine structure constant,
many high precision measurements and calculations have
been achieved [1–14]. The calculation of the fine structure
splittings in 1s2p 3Po state has been completed to order
α7mc2 by Drake [13]. Compared with these high precision
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Table 2. Hyperfine parameters of some single-excited and double-excited states for 3He (in a.u.).

Resonances ac aSD al bq

1s2s 3Se 33.17192
1s3s 3Se 32.28694
1s4s 3Se 32.10615
1s5s 3Se 32.01638
1s6s 3Se 32.02034
1s2p 1Po 0.03825 −0.01214
1s3p 1Po 0.01126 −0.00363
1s4p 1Po 0.00476 −0.00153
1s5p 1Po 0.00248 −0.00079
1s6p 1Po 0.00145 −0.00046
2p3p 3Pe 0.17962 0.07185
2p4p 1Pe 0.17136 0.06854
2p5p 1Pe 0.16816 0.06726
2p6p 1Pe 0.16785 0.06714
1s2p 3Po 31.62570 −0.01402 0.06933 −0.02804
1s3p 3Po 31.87949 −0.04118 0.02001 −0.00824
1s4p 3Po 31.94746 −0.00169 0.00818 −0.00338
1s5p 3Po 31.96391 −0.00083 0.00404 −0.00167
1s6p 3Po 31.97688 −0.00039 0.00189 −0.00077
2p2 3Pe 0.04355 0.21777 0.08711
2p3p 3Pe 0.03506 0.17531 0.07012
2p4p 3Pe 0.03399 0.16993 0.06797
2p5p 3Pe 0.03364 0.16822 0.06729
2p6p 3Pe 0.03350 0.16751 0.06700
2p3d 1Do 0.11430 0.12437
2p4d 1Do 0.11251 0.13009
2p5d 1Do 0.11177 0.13178
2p6d 1Do 0.11148 0.13250
1s3d 1De 0.00499 −0.00121
1s4d 1De 0.00211 −0.00061
1s5d 1De 0.00108 −0.00031
1s6d 1De 0.00062 −0.00018
2p3d 3Do 0.06523 0.11462 0.13047
2p4d 3Do 0.06606 0.11250 0.13212
2p5d 3Do 0.06637 0.11183 0.13275
2p6d 3Do 0.06649 0.11151 0.13299
1s3d 3De 31.98370 −0.00072 0.00501 −0.00144
1s4d 3De 31.98610 −0.00030 0.00212 −0.00061
1s5d 3De 31.98722 −0.00016 0.00108 −0.00031
1s6d 3De 31.98759 −0.00009 0.00062 −0.00018

theoretical and experimental data, as Table 1 shows, our
results of the fine structure splittings are in reasonable
agreement with those of Drake [15]. For example, the fine
structure splittings ν2−1 and ν1−0 are −0.0015 cm−1and
−0.0183 cm−1 for 1s4d 3D state in this work, respectively.
And the corresponding results of Drake [15], using double
basis set with Hylleraas basis function, are −0.0012 cm−1

and −0.0185 cm−1, respectively. For easy comparison with
the results of Drake [15] and experimental data [1–8],
we transferred our results to term energies relative to
ground state in eV according to the following principle:
1 a.u. = 27.20767 eV, and the energy of the ground
state is 79.0056 eV [24]. We transferred the results of
Drake [15] from MHz to µa.u. or cm−1 according to the fol-
lowing principle: 1 a.u. = 219 444.54 cm−1. Furthermore,
we calculated the fine structure of the doubly-excited

2lnl 3Pe, and 3Do states. To our knowledge, no calcu-
lations have been reported for the fine structure of this
doubly-excited state system. Our reliable theoretical re-
sults should be useful for studying the spectra in the fu-
ture.

The hyperfine structure is caused by the interaction
between the electrons and the electromagnetic multipole
moments of the nucleus, sensitive to the correlation effects
between electrons and the relativistic corrections. The hy-
perfine structure of 2 3Po levels of 3He has been a subject
of experimental and theoretical interest in atomic physics
for a long time [25–29]. Recently, the hyperfine splitting
of 2 3S1 state in 3He is explored by Pachucki [30]. A very
large second-order correction due to the Fermi interaction
have been found in their work. Tables 2 and 3 give the hy-
perfine parameters and the hyperfine coupling constants
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Table 3. Hyperfine coupling constants of some single-excited and double-excited states for 3He (in GHz).

AJ

J = 3 J = 2 J = 1Resonances

1s2s 3Se −4.49443
1s3s 3Se −4.37453
1s4s 3Se −4.35003
1s5s 3Se −4.34193
1s6s 3Se −4.33840
1s2p 1Po −1.55276(−2)
1s3p 1Po −4.57232(−3)
1s4p 1Po −1.93333(−3)
1s5p 1Po −1.00639(−3)
1s6p 1Po −5.86835(−4)
2p3p 1Pe −7.29127(−2)
2p4p 1Pe −6.95572(−2)
2p5p 1Pe −6.82588(−2)
2p6p 1Pe −6.81350(−2)
1s2p 3Po −2.15369 −2.17079
1s3p 3Po −2.16288 −2.16791
1s4p 3Po −2.16558 −2.16764
1s5p 3Po −2.16603 −2.16705
1s6p 3Po −2.16656 −2.16704
2p2 3Po −5.30509(−2) 5.93094(−5)
2p3p 3Pe −4.27064(−2) 4.77446(−5)
2p4p 3Pe −4.13974(−2) 4.62811(−5)
2p5p 3Pe −4.09792(−2) 4.58136(−5)
2p6p 3Pe −4.08069(−2) 4.56210(−5)
2p3d 1Do −2.31993(−2)
2p4d 1Do −2.28348(−2)
2p5d 1Do −2.26855(−2)
2p6d 1Do −2.26271(−2)
1s3d 1De −1.01304(−3)
1s4d 1De −4.27647(−4)
1s5d 1De −2.18655(−4)
1s6d 1De −1.26719(−4)
2p3d 3Do −2.43477(−2) −3.91885(−3) 1.15071(−2)
2p4d 3Do −2.41731(−2) −3.36418(−3) 1.27410(−2)
2p5d 3Do −2.41240(−2) −3.17616(−3) 1.31681(−2)
2p6d 3Do −2.40974(−2) −3.09421(−3) 1.33497(−2)
1s3d 3De −1.44506 −7.23259(−1) 2.16468
1s4d 3De −1.44483 −7.22724(−1) 2.16602
1s5d 3De −1.44476 −7.22540(−1) 2.16652
1s6d 3De −1.44473 −7.22455(−1) 2.16673

AJ for 1sns 1,3Se, 1snp 1,3Po, 1snd 1,3De, 2pnp 1,3Pe, and
2pnd 1,3Do states in 3He. In this calculation, high precise
wave functions are used. We studied the hyperfine struc-
ture parameters: Fermi contact ac, the spin-dipolar aSD,
the orbital al, and the electric quadrupole bq. In this work,
Q = 0.0b, µI = −2.127625 nm, and I = 1/2 are taken
from reference [19]. To our knowledge, few data of the hy-
perfine parameters ac, aSD, al, bq, and hyperfine coupling
constants AJ have been reported for this system of 3He in
the literature.

This work is supported by the National Natural Science Foun-
dation of China under Grant No. 10074006 and the Doctoral
Degree Program Foundation of Ministry of Education P.R.
China under Grant No. 20020007036.
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